Multi-Pipeline DAG
Learn how to build a DAG with multiple pipelines.
In this tutorial, we’ll build a multi-pipeline DAG to train a regression model on housing market data to predict the value of homes in Boston. This tutorial builds on the skills learned from the previous tutorials, (Standard ML Pipeline and AutoML Pipeline.
Before You Start #
- You must have Pachyderm installed and running on your cluster
- You should have already completed the Standard ML Pipeline tutorial
- You must be familiar with jsonnet
- This tutorial assumes your active context is
localhost:80
Tutorial #
Our Docker image’s user code for this tutorial is built on top of the civisanalytics/datascience-python base image, which includes the necessary dependencies. It uses pandas to import the structured dataset and the scikit-learn library to train the model.
Each pipeline in this tutorial executes a Python script, versions the artifacts (datasets, models, etc.), and gives you a full lineage of the model. Once it is set up, you can change, add, or remove data and Pachyderm will automatically keep everything up to date, creating data splits, computing data analysis metrics, and training the model.
1. Create an Input Repo #
Create a project named
multipipeline-tutorial
.pachctl create project multipipeline-tutorial
Set the project as current.
pachctl config update context --project multipipeline-tutorial
Create a new data repository called
csv_data
where we will put our dataset.pachctl create repo csv_data
- Navigate to Console.
- Select Create Project.
- Provide a project Name and Description.
- Name:
multipipeline-tutorial
- Description:
My third project tutorial.
- Name:
- Select Create.
- Scroll to the project’s row and select View Project.
- Select Create Your First Repo.
- Provide a repo Name and Description.
- Name:
csv_data
- Description:
Repo for initial csv data
- Name:
- Select Create.
2. Create the Pipelines #
We’ll deploy each stage in our ML process as a Pachyderm pipeline. Organizing our work into pipelines allows us to keep track of artifacts created in our ML development process. We can extend or add pipelines at any point to add new functionality or features, while keeping track of code and data changes simultaneously.
1. Data Analysis Pipeline #
The data analysis pipeline creates a pair plot and a correlation matrix showing the relationship between features. By seeing what features are positively or negatively correlated to the target value (or each other), it can helps us understand what features may be valuable to the model.
Create a file named
data_analysis.json
with the following contents:{ "pipeline": { "name": "data_analysis", "project": { "name": "multipipeline-tutorial" }, }, "description": "Data analysis pipeline that creates pairplots and correlation matrices for csv files.", "input": { "pfs": { "glob": "/*", "repo": "csv_data" } }, "transform": { "cmd": [ "python", "data_analysis.py", "--input", "/pfs/csv_data/", "--target-col", "MEDV", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
Save the file.
Create the pipeline.
pachctl create pipeline -f /path/to/data_analysis.json
- Select Create > Pipeline.
- Overwrite the default json with the following:
{ "pipeline": { "name": "data_analysis", "project": { "name": "multipipeline-tutorial" }, }, "description": "Data analysis pipeline that creates pairplots and correlation matrices for csv files.", "input": { "pfs": { "glob": "/*", "repo": "csv_data" } }, "transform": { "cmd": [ "python", "data_analysis.py", "--input", "/pfs/csv_data/", "--target-col", "MEDV", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
2. Split Pipeline #
Split the input csv
files into train
and test
sets. As we new data is added, we will always have access to previous versions of the splits to reproduce experiments and test results.
Both the split
pipeline and the data_analysis
pipeline take the csv_data
as input but have no dependencies on each other. Pachyderm is able to recognize this. It can run each pipeline simultaneously, scaling each horizontally.
Create a file named
split.json
with the following contents:{ "pipeline": { "name": "split", "project": { "name": "multipipeline-tutorial" }, }, "description": "A pipeline that splits tabular data into training and testing sets.", "input": { "pfs": { "glob": "/*", "repo": "csv_data" } }, "transform": { "cmd": [ "python", "split.py", "--input", "/pfs/csv_data/", "--test-size", "0.1", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
Save the file.
Create the pipeline.
pachctl create pipeline -f /path/to/split.json
- Select Create > Pipeline.
- Overwrite the default json with the following:
{ "pipeline": { "name": "split", "project": { "name": "multipipeline-tutorial" }, }, "description": "A pipeline that splits tabular data into training and testing sets.", "input": { "pfs": { "glob": "/*", "repo": "csv_data" } }, "transform": { "cmd": [ "python", "split.py", "--input", "/pfs/csv_data/", "--test-size", "0.1", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
3. Regression Pipeline #
To train the regression model using scikit-learn. In our case, we will train a Random Forest Regressor ensemble. After splitting the data into features and targets (X
and y
), we can fit the model to our parameters. Once the model is trained, we will compute our score (r^2) on the test set.
After the model is trained we output some visualizations to evaluate its effectiveness of it using the learning curve and other statistics.
Create a file named
regression.json
with the following contents:{ "pipeline": { "name": "regression", "project": { "name": "multipipeline-tutorial" }, }, "description": "A pipeline that trains and tests a regression model for tabular.", "input": { "pfs": { "glob": "/*/", "repo": "split" } }, "transform": { "cmd": [ "python", "regression.py", "--input", "/pfs/split/", "--target-col", "MEDV", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
Save the file.
Create the pipeline.
pachctl create pipeline -f /path/to/regression.json
- Select Create > Pipeline.
- Overwrite the default json with the following:
{ "pipeline": { "name": "regression", "project": { "name": "multipipeline-tutorial" }, }, "description": "A pipeline that trains and tests a regression model for tabular.", "input": { "pfs": { "glob": "/*/", "repo": "split" } }, "transform": { "cmd": [ "python", "regression.py", "--input", "/pfs/split/", "--target-col", "MEDV", "--output", "/pfs/out/" ], "image": "jimmywhitaker/housing-prices-int:dev0.2" } }
3. Upload the Dataset #
- Download our first example data set, housing-simplified-1.csv.
- Add the data to your repo.
pachctl put file csv_data@master:housing-simplified.csv -f /path/to/housing-simplified-1.csv
- Download our first example data set, housing-simplified-1.csv.
- Select the csv_data repo > Upload Files.
- Select Browse Files.
- Choose the
housing-simplified-1.csv
file. - Select Upload.
4. Download the Results #
Once the pipeline has finished, download the results.
pachctl get file regression@master:/ --recursive --output .
- Scroll to the repo in the DAG.
- Select Output > Inspect Commits.
- Select the most recent commit.
- Select Download.
5. Update the Dataset #
- Download our second example data set, housing-simplified-2.csv.
- Add the data to your repo.
pachctl put file csv_data@master:housing-simplified.csv -f /path/to/housing-simplified-2.csv
COMING SOON
6. Inspect the Data #
We can use the diff
command and ancestry syntax to see what has changed between the two versions of the dataset.
pachctl diff file csv_data@master csv_data@master^
Bonus Step: Rolling Back #
If you need to roll back to a previous dataset commit, you can do so with the create branch
command and ancestry syntax.
pachctl create branch csv_data@master --head csv_data@master^
User Code Assets #
The Docker image used in this tutorial was built with the following assets:
FROM civisanalytics/datascience-python
RUN pip install seaborn
WORKDIR /workdir/
COPY *.py /workdir/
import argparse
import os
from os import path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplit
from sklearn import datasets, ensemble, linear_model
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
from sklearn.metrics import r2_score
parser = argparse.ArgumentParser(description="Structured data regression")
parser.add_argument("--input",
type=str,
help="directory with train.csv and test.csv")
parser.add_argument("--target-col",
type=str,
default="MEDV",
help="column with target values")
parser.add_argument("--output",
metavar="DIR",
default='./output',
help="output directory")
def load_data(input_csv, target_col):
# Load the Boston housing dataset
data = pd.read_csv(input_csv, header=0)
targets = data[target_col]
features = data.drop(target_col, axis = 1)
return data, features, targets
def train_model(features, targets):
# Train a Random Forest Regression model
reg = ensemble.RandomForestRegressor(random_state=1)
scores = cross_val_score(reg, features, targets, cv=10)
print("Cross Val Score: {:2f} (+/- {:2f})".format(scores.mean(), scores.std() * 2))
reg.fit(features,targets)
return reg
def test_model(model, features, targets):
# Train a Random Forest Regression model
score = r2_score(model.predict(features), targets)
return "Test Score: {:2f}".format(score)
def create_learning_curve(estimator, features, targets):
plt.clf()
title = "Learning Curves (Random Forest Regressor)"
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
plot_learning_curve(estimator, title, features, targets,
ylim=(0.5, 1.01), cv=cv, n_jobs=4)
def main():
args = parser.parse_args()
input_dirs = []
file_list = os.listdir(args.input)
if 'train.csv' in file_list and 'test.csv' in file_list:
input_dirs = [args.input]
else: # Directory of directories
for root, dirs, files in os.walk(args.input):
for dir in dirs:
file_list = os.listdir(os.path.join(root, dir))
if 'train.csv' in file_list and 'test.csv' in file_list:
input_dirs.append(os.path.join(root,dir))
print("Datasets: {}".format(input_dirs))
os.makedirs(args.output, exist_ok=True)
for dir in input_dirs:
experiment_name = os.path.basename(os.path.splitext(dir)[0])
train_filename = os.path.join(dir,'train.csv')
test_filename = os.path.join(dir,'test.csv')
# Data loading
train_data, train_features, train_targets = load_data(train_filename, args.target_col)
print("Training set has {} data points with {} variables each.".format(*train_data.shape))
test_data, test_features, test_targets = load_data(test_filename, args.target_col)
print("Testing set has {} data points with {} variables each.".format(*test_data.shape))
reg = train_model(train_features, train_targets)
test_results = test_model(reg, test_features, test_targets)
create_learning_curve(reg, train_features, train_targets)
plt.savefig(path.join(args.output, experiment_name + '_cv_reg_output.png'))
print(test_results)
# Save model and test score
joblib.dump(reg, path.join(args.output, experiment_name + '_model.sav'))
with open(path.join(args.output, experiment_name + '_test_results.txt'), "w") as text_file:
text_file.write(test_results)
if __name__ == "__main__":
main()
import argparse
import os
from os import path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from utils import load_data
from sklearn.model_selection import train_test_split
parser = argparse.ArgumentParser(description="Structured data regression")
parser.add_argument("--input",
type=str,
help="csv file with all examples")
parser.add_argument("--output",
metavar="DIR",
default='./output',
help="output directory")
parser.add_argument("--test-size",
type=float,
default=0.2,
help="percentage of data to use for testing (\"0.2\" = 20% used for testing, 80% for training")
parser.add_argument("--seed",
type=int,
default=42,
help="random seed")
def main():
args = parser.parse_args()
if os.path.isfile(args.input):
input_files = [args.input]
else: # Directory
for dirpath, dirs, files in os.walk(args.input):
input_files = [ os.path.join(dirpath, filename) for filename in files if filename.endswith('.csv') ]
print("Datasets: {}".format(input_files))
for filename in input_files:
file_basename = os.path.basename(os.path.splitext(filename)[0])
os.makedirs(os.path.join(args.output,file_basename), exist_ok=True)
# Data loading
data = load_data(filename)
train, test = train_test_split(data, test_size=args.test_size, random_state=args.seed)
train.to_csv(os.path.join(args.output, file_basename, 'train.csv'), header=True, index=False)
test.to_csv(os.path.join(args.output, file_basename, 'test.csv'), header=True, index=False)
if __name__ == "__main__":
main()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
def load_data(input_csv, target_col=None):
# Load the Boston housing dataset
data = pd.read_csv(input_csv, header=0)
if target_col:
targets = data[target_col]
features = data.drop(target_col, axis = 1)
print("Dataset has {} data points with {} variables each.".format(*data.shape))
return data, features, targets
return data
def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,
n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate 3 plots: the test and training learning curve, the training
samples vs fit times curve, the fit times vs score curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
axes : array of 3 axes, optional (default=None)
Axes to use for plotting the curves.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is not a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validators that can be used here.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))
"""
if axes is None:
_, axes = plt.subplots(1, 3, figsize=(20, 5))
axes[0].set_title(title)
if ylim is not None:
axes[0].set_ylim(*ylim)
axes[0].set_xlabel("Training examples")
axes[0].set_ylabel("Score")
train_sizes, train_scores, test_scores, fit_times, _ = \
learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,
train_sizes=train_sizes,
return_times=True)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fit_times_mean = np.mean(fit_times, axis=1)
fit_times_std = np.std(fit_times, axis=1)
# Plot learning curve
axes[0].grid()
axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color="g")
axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
axes[0].legend(loc="best")
# Plot n_samples vs fit_times
axes[1].grid()
axes[1].plot(train_sizes, fit_times_mean, 'o-')
axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std,
fit_times_mean + fit_times_std, alpha=0.1)
axes[1].set_xlabel("Training examples")
axes[1].set_ylabel("fit_times")
axes[1].set_title("Scalability of the model")
# Plot fit_time vs score
axes[2].grid()
axes[2].plot(fit_times_mean, test_scores_mean, 'o-')
axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1)
axes[2].set_xlabel("fit_times")
axes[2].set_ylabel("Score")
axes[2].set_title("Performance of the model")
return plt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from os import path
from sklearn.model_selection import ShuffleSplit
from sklearn import datasets, ensemble, linear_model
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
from sklearn.metrics import r2_score
def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,
n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate 3 plots: the test and training learning curve, the training
samples vs fit times curve, the fit times vs score curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
axes : array of 3 axes, optional (default=None)
Axes to use for plotting the curves.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is not a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validators that can be used here.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))
"""
if axes is None:
_, axes = plt.subplots(1, 1, figsize=(5, 5))
axes.set_title(title)
if ylim is not None:
axes.set_ylim(*ylim)
axes.set_xlabel("Training examples")
axes.set_ylabel("Score")
train_sizes, train_scores, test_scores, fit_times, _ = \
learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,
train_sizes=train_sizes,
return_times=True)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fit_times_mean = np.mean(fit_times, axis=1)
fit_times_std = np.std(fit_times, axis=1)
# Plot learning curve
axes.grid()
axes.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
axes.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color="g")
axes.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
axes.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
axes.legend(loc="best")
return plt
def create_pairplot(data):
plt.clf()
# Calculate and show pairplot
sns.pairplot(data, height=2.5)
plt.tight_layout()
def create_corr_matrix(data):
plt.clf()
# Calculate and show correlation matrix
sns.set()
corr = data.corr()
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype=np.bool))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns_plot = sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, annot=True, cbar_kws={"shrink": .5})
def data_analysis(data):
create_pairplot(data)
plt.show()
create_corr_matrix(data)
plt.show()
def load_data(input_data, target_col):
# Load the Boston housing dataset
data = input_data
targets = data[target_col]
features = data.drop(target_col, axis = 1)
return data, features, targets
def train_model(features, targets):
# Train a Random Forest Regression model
reg = ensemble.RandomForestRegressor(random_state=1)
scores = cross_val_score(reg, features, targets, cv=10)
print("Cross Val Score: {:2f} (+/- {:2f})".format(scores.mean(), scores.std() * 2))
reg.fit(features,targets)
return reg
def test_model(model, features, targets):
# Train a Random Forest Regression model
score = r2_score(model.predict(features), targets)
return "Test Score: {:2f}".format(score)
def create_learning_curve(estimator, features, targets):
plt.clf()
title = "Learning Curves (Random Forest Regressor)"
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
plot_learning_curve(estimator, title, features, targets,
ylim=(0.5, 1.01), cv=cv, n_jobs=4)
def set_dtypes(data):
for key in data:
data[key] = data[key].astype(float)
return data